交错级数limUn不趋向于0

来源:学生作业帮助网 编辑:作业帮 时间:2021/09/22 10:25:32
交错级数级数lnn /n 的敛散性?

根据莱布尼兹判别法,要证两点:1、通项n充分大以后,un单调递减2、n趋于无穷时,un极限为0下面先证1.un>u(n+1).(1)lnn/n>ln(n+1)/(n+1)(n+1)lnn>nln(n+

级数(Un-1)收敛'则limUn的值为什么是1

级数收敛的必要条件是一般项的极限为0.即lim(Un-1)=0,所以lim(Un)=1.再问:问一下为什么∫xdx=∫1dx再问:应该是∫xdlnx为什么等于∫1d x再答:再问:为什么l

若当n趋向于无穷时,limun=a,证明:当n趋向于无穷时lim|un|=|a|

由limun=a,知对于任意的e>0,存在自然数k0,使得n>k0时,有|un-a|k0时,||un|-|a||小于等于|un-a|

这个交错级数收敛吗?没有正负号的原级数证出来是发散的这个交错级数不满足莱布尼兹定理(后一项小于等于前一项)所以不能用莱布

用后项此前项,极限无穷,级数发散再问:原级数是发散,但是怎么证明交错级数的敛散性呢?再答:先看对应的正项级数是否收敛如果发散,再用莱布尼兹交错级数判别定理判断一般方法是这样

交错级数莱布尼茨定理如题,莱布尼茨定理为Un>U(n+1),limUn=0,级数收敛,级数通项(-1)^(n-1)Un,

级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛

高数,级数,泰勒公式.请问如何讨论ln(1+x)直接展开后的余项是否趋向于0?

是否可以这样理解?先求出收敛域,判断出第二项是大于0小于1.求极限时,化离散量为连续量,那么当t趋于无穷时,第二项是无穷小量.第一项是有界量,当t趋于无穷时.那么极限便是0再答:是否可以这样理解?先求

高数,级数,泰勒公式.请问如何讨论ln(1+x)直接展开后的余项是否趋向于0?采纳好评.谢谢大神

高阶趋于零x有取值范围的绝对值小于1再问:再问:因为有那个ξ在,不知道怎么讨论咯再问:谢谢您啦,帮我再看看再问:收敛域感觉都不好算啊再答:letmeseesee这个是要算收敛域咩?再问:应该要算的吧,

高等数学,交错级数收敛

根据交错级数莱布尼兹判别法,这个级数的一般项的绝对值趋于0,并且一般项的绝对值是单调递减的,故这个交错级数是收敛的以下是莱布尼兹定理的介绍 莱布尼茨定理 若一交错级数的项的绝对值单调趋于零,则这级数收

1.为什么x趋向于0时,1/x趋向于无穷大?如果从负方向趋向,带个负号,不就是无穷小了吗?

我觉得你根本就没有看书,什么叫无穷小?再问:就是无穷小啊。无穷小量简称无穷小啊,书上原话!!你是几年级的?再答:无穷小量:如果不管正的常数ε是怎样的一个数,在给定的过程中都可以找到这样一个时刻,在这个

交错级数只要原级数的极限趋向于0就一定收敛?

不是还有一个要求吗,前一个比后一个大再问:书上是有这个条件,可是(-1)^n/n^0.9为什么是条件收敛?再答:因为它不是绝对收敛,而且这两条都行再问:好吧,我问的是。。原级数为什么收敛绝对值后p-级

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

如果交错级数不满足莱布尼兹审敛法,是不是说明级数发散?

不能,那只是充分条件,非必要条件再问:那帮我解决一个级数收敛的问题:∑(n=1到无穷)(-a)^n/(a^n+b^n)(a>b>0)告诉我大概的方法即可。再答:分子分母除以a^n,得到(-1)^n/(

高等数学交错级数敛散性证明问题求解

通项的极限是1/2不趋向0,违反收敛必要条件,所以级数不收敛下面那题通项趋于0,根据交错级数莱布尼茨判别法,收敛再问:第一道题“通项的极限是1/2不趋向0”,只能说明不是绝对收敛,还有可能是条件收敛啊

求一道交错级数的敛散性问题

图片我看不到,只能通过你的描述来理解题意.第一题,因为当n趋于无穷大时,级数的极限不趋向于0,所以肯定发散,因为级数收敛的一个必要条件就是n无穷大时,级数项一定要趋近于0.关于你的补充问题,“对于幂级

交错级数及其审敛法中的莱布尼茨定理

首先,交错级数因为有一正一负的情况,因此要讨论两种情况.其次,两步证明中一个是2n+1一个是2n是两个相邻的数,可以满足第一点的两种情况,又两个极限相等,故可统一为一个极限.

交错级数敛散性判断, 

这怎么是交错级数?是二次积分:  ∫[0,1]dy∫[0,y]cosy²dx  =∫[0,1]ycosy²dy  =(1/2)siny²|[0,1]  =(1/2)sin

交错级数敛散性的证明 

条件收敛,绝对值的话n趋于无穷时等价于1/n,发散,然后交错级数绝对值单调递减趋于0,收敛,所以是条件收敛

【级数求助】莱布尼茨是交错级数收敛的充分条件?

为什么你问的问题总那么古怪呢1,那是定理,满足莱布尼茨定理了,你说能不能推出交错级数收敛,你说是不是充分条件?定义定理一般都是充分条件,如果不是的话,那定义定理就是错的2,A是中国人推出A是人B是外国

若limun=0 则级数∑un 收敛么

不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可

为什么x趋向0时,sinx趋向于x

等价无穷小的概念请看一下高等教育出版社的《高等数学》同济大学第4版,里面写得很清楚